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Abstract. We study definite integrals over the ordinary three-dimensional space of∏
ij f (rij )

∏
j W(rj ), wheref (rij ) is a function only of the distancerij between pointsri

and rj andW(r) is either a Gaussian or any other function which ensures the convergence
of the integral. No analytical formula for them in general is known at present. The method is
based on a multipole expansion for angular integrations and a transfer matrix approach for radial
integrations. It can be generalized for any number of dimensions. A detailed study is presented
for the case off (r) = r andW(r) = exp(−r2/2), for three and one dimensions. To illustrate
the generality of the method, the same integrals in one dimension are calculated withW(r) as
a step function. Comparison with the analytical solutions then provides a family of identities.

1. Introduction

Let

F =
∫

e−(r
2
1+r2

2+···)/2F(r1, r2, . . .)
∏
j

d3rj

(2π)3/2
(1.1)

where r1, r2, . . . , are vectors in the ordinary three-dimensional space, the function
F(r1, r2, . . .) is some product of functions

∏
ij f (rij ) depending only on the distances

rij = |ri −rj |, the integral is taken over all the space, and the normalization is chosen such
that 1̄= 1. Zeische came across the particular integrals [1]

X1 = r12 = 4√
π

X2 = r12r23 = 2+ 6
√

3

π
X3 = r12r23r34 =? Xn = r12r23 . . . rn n+1 =? (1.2)

Y2 = r12r21 = 6 Y3 = r12r23r31 =?
Y4 = r12r23r34r41 =? Yn = r12r23r34 . . . rn1 =? (1.3)

If one replaces therij by an even power of them, then the integrations are simpler [1].
Doing a multipole expansion in terms of spherical harmonics one can do angular

integrations. Only radial integrations then remain, which can be reduced to the solutions of
Fredholm integral equations. Curiously, the problem is less difficult ind dimensions when
d is odd, than for even dimensions where it is more difficult. We have not been able to solve
the integral equations. Radial integrations can be done by direct calculation with increasing
complexity asn number of vectors increases. There seems to be no simple closed formula
for Xn or Yn. The kernels of the integral equations play a role similar to a transfer matrix
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8672 M L Mehta and J-M Normand

as, for example, in the study of the Ising model in statistical mechanics. These kernels are
real symmetric and the traces of their first few powers can easily be computed. The largest
eigenvalues dominate which yield the approximate formulae

Xn = A1λ
n
1(0)+ A2λ

n
2(0)+ A3λ

n
3(0) (1.4)

Yn = λn1(0)+ λn2(0)+ λn3(0)+ 3λn1(1) (1.5)

where the constants have the approximate values

A1 = 0.965 282 A2 = 0.033 892 A3 = 0.000 712 (1.6)

λ1(0) = 2.344 693 λ2(0) = −0.192 339 λ3(0) = −0.017 291
λ1(1) = −0.387 100. (1.7)

Such integrals can conveniently be represented by graphs. ThusXn is an open chain
with n links while Yn is a loop withn links. All angular integrations can be performed
by our method of multipole expansion for graphs having either no loop (tree structure) or
one loop. For graphs involving two or more loops, angular integrations can again be done
but they involve the Wigner 3-j or 6-j symbols (Racah coefficients) familiar in the quantum
theory of angular momentum. Then only the radial integrations will remain. The method
of multipole expansion and integral equations can also be used when the exponentials in
(1.1) are replaced by the weight

∏
i W(ri), W(r) decreasing fast enough for the integral to

exist. This is the case, for example, when the variables are confined inside the unit sphere,
i.e.W(r) = 1 for r 6 1 andW(r) = 0 for r > 1.

This paper is organized as follows. In section 2 we explain the multipole expansion
for three dimensions. Angular integrations are performed in section 3. Section 4 is
devoted to the integral equations related to radial integrations. In section 5 we compute
the radial integrals directly. All considerations until now were for three dimensions. The
generalization to other dimensions is given in section 6. The special case whered = 1 is
treated in section 7. In section 8 the same integrals are calculated for a step functionW(r)

instead of the Gaussian weight used previously. The appendix gives relevant information
for the generald-dimensional case.

2. Multipole expansion

Denoted byθij the angle betweenri andrj , f (rij ) is a function ofri , rj andx = cosθij ,
symmetric inri andrj ,

f (rij ) ≡ f [(r2
i + r2

j − 2rirj x)
1/2]. (2.1)

Any functionf (rij ) square integrable in−16 x 6 1 can be expanded in terms of Legendre
polynomials [2]Pl(x), l = 0, 1, . . .,

f (rij ) =
∞∑
l=0

Fl(ri, rj )Pl(x) (x = cosθij ). (2.2)

The orthogonality relation [2]∫ 1

−1
Pl(x)Pm(x) dx = hlδlm hl = 2

2l + 1
(2.3)

allows us to write

Fl(ri, rj ) = 1

hl

∫ 1

−1
f (rij )Pl(x) dx. (2.4)
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For the integrals (1.2) and (1.3) we takef (rij ) = rij . In this case, and more generally if
f (rij ) = r2n+1

ij , n = 0, 1, . . ., in order to calculateFl(ri, rj ) one can use two other general
properties of orthogonal polynomials, namely the existence of a generating function

(1+ z2− 2xz)−1/2 =
∞∑
l=0

Pl(x)z
l |z| 6 1 (2.5)

and the linear recurrence relation which relates three consecutive polynomials

xPl(x) = l

2l + 1
Pl−1(x)+ l + 1

2l + 1
Pl+1(x). (2.6)

In particular,

r2n+1
ij = r2n+1

i (1+ z2− 2xz)n+1/2 z = rj

ri
(2.7)

and assumingz 6 1, one gets from (2.5)

r2n+1
ij = r2n+1

i (1+ z2− 2xz)n+1
∞∑
k=0

Pk(x)z
k (2.8)

and from (2.4) forri > rj

Fl(ri, rj ) = 1

hl
r2n+1
i

∞∑
k=0

zk
∫ 1

−1
(1+ z2− 2xz)n+1Pl(x)Pk(x) dx. (2.9)

Now expanding(1+z2−2xz)n+1 in powers ofx and using iteratively the recurrence relation
(2.6), each termxpPk(x) can be expressed as a linear combination with constant coefficients
of the p + 1 polynomialsPk−p, Pk−p+2, . . ., Pk+p−2, Pk+p. The integration overx can
then be performed using the orthogonality relation (2.3). For the casen = 0, this procedure
gives

Fl(ri, rj ) = ri
[

1

2l + 3

(
rj

ri

)l+2

− 1

2l − 1

(
rj

ri

)l]
ri > rj . (2.10)

The next step of the multipole expansion method follows from the invariance ofrij
under a simultaneous SO(3) rotation ofri and rj . The spherical harmonicsYlm, l > 0,
−l 6 m 6 l, form the standard basis of the irreducible representations of the SO(3) group
in the space of square integrable functions defined on the surface of the three-dimensional
sphere with the invariant measure d� = sinθ dθ dφ. The orthogonality relation reads [3]∫
Y ∗lm(�)Yl′m′(�) d� ≡

∫ π

0
dθ sinθ

∫ 2π

0
dφY ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ (2.11)

and one special value we need is

Y00(�) = 1√
4π
. (2.12)

One also has the addition theorem [2, 5]

Pl(x) = 4π

2l + 1

l∑
m=−l

Y ∗lm(�i)Ylm(�j ) (2.13)

where�i stands for the polar angles(θi ,φi) of ri .
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3. Angular integrations

Doing a multipole expansion of each functionf (rij ) one can conveniently represent the
integrals by introducing a graphical representation as follows. To each functionf (rij )

there is a link between the pointsi and j to which is associated a sum overlij , mij , a
radial function(4π/(2lij +1))Flij (ri , rj ), the spherical harmonicY ∗lijmij (�i) at the endi and
Ylijmij (�j ) at the endj . Each vertexi stands for the radial integration

(2π)−3/2
∫ ∞

0
drir

2
i e−r

2
i /2

and the angular integration
∫

d�i .
Let us first consider the diagram with a single chain. At each end point there is only

one spherical harmonic. From the special value (2.12) and the orthogonality relation (2.11),
the integration at the end point

∫
d� yields the factor

√
4πδl0δm0. Then the integration∫

d�i for each vertex joined to this end point, using (2.11), propagates the valuesl = 0
andm = 0 all along the chain. Thereby one obtains for a chain of lengthn

Xn =
(

2

π

)1/2 ∫ ∞
0
r1 e−r

2
1/4K0(r1, r2)K0(r2, r3) . . . K0(rn, rn+1)rn+1 e−r

2
n+1/4

n+1∏
j=1

drj (3.1)

= 〈g|Kn
0 |g〉 (3.2)

where for compactness and to emphasize the structure of the expression, we have used
bracket notation with

Kl(r, r
′) = 〈r|Kl|r ′〉 =

(
2

π

)1/2 1

2l + 1
Fl(r, r

′)rr ′ e−(r
2+r ′2)/4 (3.3)

〈r|g〉 =
(

2

π

)1/4

r e−r
2/4 〈g|g〉 = 1. (3.4)

Notice that only the multipolel = 0 occurs inXn.
For one loop diagrams, a similar argument shows that all the links carry the same value

of l andm. Since the result of the angular integrations no longer depends onm, one gets
a sum overl with a weight 2l + 1 for the loop. Thus for a loop ofn links one gets

Yn =
∞∑
l=0

(2l + 1)
∫ ∞

0
Kl(r1, r2)Kl(r2, r3) . . . Kl(rn, r1)

n∏
j=1

drj (3.5)

=
∞∑
l=0

(2l + 1)TrKn
l . (3.6)

The same method applies to any graph having either no loop (tree structure) or one
loop. Indeed thel = 0 andm = 0 values propagate along each branch from the external
end point to a vertex where it reaches either a loop or another branch. For graphs involving
two or more loops, thel values carried by each incoming link at a bifurcation have to be
recoupled according to the usual angular momentum algebra. The angular integration over
each�i implies the invariance of the result under any individual rotation ofri . Therefore,
all the incomingl values at a vertex must be recoupled to zero. This recoupling scheme
involves Wigner 3-j or 6-j symbols (Racah coefficients) familiar in the quantum theory of
angular momentum.

Notice that the above discussion is valid for any functionf (rij ) depending only on the
distancerij and for any weightW(r) replacing the Gaussian.



On some definite multiple integrals 8675

4. Radial integrations

Consider now the integral equation∫ ∞
0
Kl(r, r

′)ψj (r ′, l)dr ′ = λj (l)ψj (r, l) (4.1)

with Kl(r, r ′) given by (3.3) above. The kernelKl(r, r ′) is real symmetric and the trace of
its square forf (rij ) = rij∫ ∞

0
K2
l (r, r

′) dr dr ′ = 4

π(2l + 1)2

∫
06r6r ′<∞

[
1

2l + 3

rl+3

r ′l
− 1

2l − 1

rl+1

r ′l−2

]2

×e−(r
2+r ′2)/2 dr dr ′ (4.2)

is finite. According to a theorem of Fredholm [4], the eigenvaluesλj (l) are discrete and
their only point of accumulation may be zero. The eigenvaluesλj (l) lie on a finite part of
the real line and the eigenfunctionsψj(r, l) can be chosen to be real orthonormal∫ ∞

0
ψj(r, l)ψk(r, l)dr = δjk. (4.3)

The eigenvalues can be supposed to be ordered in decreasing absolute value. One can
therefore write the spectral decomposition

Kl(r, r
′) =

∑
j

λj (l)ψj (r, l)ψj (r
′, l) (4.4)

and hence

Xn =
(

2

π

)1/2∑
j

λnj (0)

(∫ ∞
0
ψj(r, 0)r e−r

2/4 dr

)2

=
∑
j

λnj (0)〈ψj |g〉2 (4.5)

Yn =
∞∑
l=0

(2l + 1)
∑
j

λnj (l). (4.6)

The traces of the first two powers ofKl(r, r ′) are

T1(l) = TrKl =
∫ ∞

0
Kl(r, r)dr = −

(
2

π

)1/2 8

(2l − 1)(2l + 1)(2l + 3)
(4.7)

T2(l) = TrK2
l =

∫ ∞
0
K2
l (r, r

′) dr dr ′

= 4

π(2l + 1)2

(
1

(2l + 3)2
Il+3− 2

(2l − 1)(2l + 3)
Il+2+ 1

(2l − 1)2
Il+1

)
(4.8)

where

Il =
∫ ∞

0
drr2l e−r

2/2
∫ ∞
r

dr ′r ′6−2l e−r
′2/2 = 48

∫ 1

0

t2l

(t2+ 1)4
dt. (4.9)

The last expression, obtained by a change of variablesu = rr ′, t = r/r ′, shows that
Il+1 < Il . Replacing thet2+ 1 in the denominator by 2 or 2t one obtains bounds forIl

3

2l + 1
< Il <

3

2l − 3
l > 2. (4.10)
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A rough upper bound forT2(l) is thus given by

T2(l) <
4

π(2l + 1)2

(
1

(2l + 3)2
+ 2

(2l − 1)(2l + 3)
+ 1

(2l − 1)2

)
Il+1

= 16

π(2l + 3)2(2l − 1)2
Il+1 (4.11)

i.e. T2(l) decreases at least as fast asl−5 with l. For example

I1 = 3π

4
+ 1 I2 = 3π

4
− 1 I3 = 15π

4
− 11

I4 = 83− 105π

4
I5 = 315π

4
− 247 I6 = 2723

5
− 693π

4
(4.12)

giving

T2(0) = 20

3
− 32

9π
≈ 5.534 898 T2(1) = 224

75π
− 4

5
≈ 0.150 686

T2(2) = 76

105
− 24 992

11 025π
≈ 0.002 249 T2(3) = 170 272

99 225π
− 172

315
≈ 0.000 194. (4.13)

The kernelK0(r, r
′) is positive everywhere, so that among its eigenvalues, one having the

largest absolute value is positive and non-degenerate. It is bounded by
√
T2(0).

Expressions (1.4) and (1.5) are the truncated forms of (4.5) and (4.6) retaining only
three dominant eigenvaluesλj (0), and one dominant eigenvalueλ1(1). The eigenvaluesλj
and the constantsAj were computed by diagonalizing a discrete version of the kernels with
1000 points and step length 0.01. These approximate formulae reproduce the analytical
values ofXn for 16 n 6 4 given by (1.2), (5.17) and (5.18) correct up to at least 6 decimal
points. Actually two eigenvalues are sufficient forn > 2. To convince ourselves that the
other eigenvalues ofK0(r, r

′) are quite negligible, we did also compute

T3(0) = TrK3
0 =

(
2

π

)3/2
(

305

27
− 137π

√
2

6
+ 171

√
2

2
arctan

√
2

)
≈ 12.883 024 (4.14)

while λ3
1(0)+λ3

2(0)+λ3
3(0) ≈ 12.883 029. AsT1(l) is negative andT2(l) decreases fast with

l, we keep onlyλ1(1). Numerically, the valuesλ2(1) = −0.028 21 andλ3(1) = −0.006 15
are negligible. Settingn = 2 in (1.5) yieldsY2 ≈ 5.984 418 instead of the known value 6.

5. Direct calculation of radial integrations

ForXn one needs onlyF0(r1, r2), so one can successively find with increasing complications

f1(r) =
∫ ∞

0
F0(r

′, r)r ′2 e−r
′2/2 dr ′ (5.1)

fj+1(r) =
∫ ∞

0
fj (r

′)F0(r
′, r)r ′2 e−r

′2/2 dr ′ j > 1. (5.2)

For f (rrij ) = rij , one has

f1(r) = e−r
2/2+ 1

r
(r2+ 1)ϕ(r) (5.3)

f2(r) = 5

3
e−r

2 + 1

3
(r2+ 6)

[π
2
− ϕ2(r)

]
− 2

3r
(r2+ 5)ϕ(r) e−r

2/2+
√

2

3r
(6r2+ 7)ϕ(r

√
2)

(5.4)
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with ϕ(r) the error function

ϕ(r) =
∫ r

0
e−r

′2/2 dr ′. (5.5)

From f1(r) andf2(r) one obtains

X1 = 2

π

∫ ∞
0
r2 e−r

2/2f1(r) dr (5.6)

X2 =
(

2

π

)3/2 ∫ ∞
0
r2 e−r

2/2f 2
1 (r) dr =

(
2

π

)3/2 ∫ ∞
0
r2 e−r

2/2f2(r) dr (5.7)

X3 =
(

2

π

)2 ∫ ∞
0
r2 e−r

2/2f1(r)f2(r) dr (5.8)

X4 =
(

2

π

)5/2 ∫ ∞
0
r2 e−r

2/2f 2
2 (r) dr. (5.9)

The integrals involved are of the general form

I (k, j, µ) =
∫ ∞

0
p(r)ϕj (r) e−µ

2r2/2 dr (5.10)

wherep(r) is a polynomial of degreek, µ is a real number andj is an integer. Such
integrals can be simplified first by decreasing the integerj successively to zero. For this,
choose a polynomialq(r) of degreek − 1 such that

d

dr
(q(r) e−µ

2r2/2) = e−µ
2r2/2[p(r)+K] K constant (5.11)

and integration by parts gives∫ ∞
0
p(r) e−µ

2r2/2ϕj (r) dr = −K
∫ ∞

0
e−µ

2r2/2ϕj (r) dr

−
∫ ∞

0
q(r) e−(µ

2+1)r2/2jϕj−1(r) dr (5.12)

the integrated part being zero at both limits ifj > 0. So (5.12) givesI (k, j, µ) in terms
of I (0, j, µ), I (k − 1, j − 1,

√
µ2+ 1) and known functions. ThusI (k, j, µ) can be

expressed in terms of the integralsI (0, j ′, µ′) andI (k′, 0, µ′). TheI (k, 0, µ) are standard
integrals involving gamma functions. As forI (0, j, µ), differentiating with respect toµ
and integrating by parts as above, one gets a first-order differential equation inµ

d

dµ
[µI (0, j, µ)] = − j

∫ ∞
0
ϕj−1(r)r e−(µ

2+1)r2/2 dr

= − δj1

µ2+ 1
− j (j − 1)

µ2+ 1
I (0, j − 2,

√
µ2+ 2) (5.13)

with the solution

µI (0, j, µ) = 1

j + 1

(π
2

)(j+1)/2
−
∫ µ

1
dµ

[
δj1

µ2+ 1
+ j (j − 1)

µ2+ 1
I (0, j − 2,

√
µ2+ 2)

]
(5.14)

sinceI (0, j,1) = (π/2)(j+1)/2/(j + 1). The integrations on the right-hand side of (5.14)
are more elementary and can be carried out. For example, one has

I (0, 1, µ) =
∫ ∞

0
e−µ

2r2/2ϕ(r) dr = π

2µ
− 1

µ
arctanµ (5.15)

I (0, 2, µ) =
∫ ∞

0
e−µ

2r2/2ϕ2(r) dr = 1

µ

(π
2

)3/2
−
√

2π

µ
arctan

µ√
µ2+ 2

. (5.16)
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Of course, the effort needed to computeXn increases fast withn. For example, we get
from (5.6)–(5.9)X1 andX2 as given in (1.2), and

X3 = 56
√

2

3π
√
π
− 216

π
√
π

arctan(
√

2)+ 238

3
√
π
≈ 12.442 385 (5.17)

X4 = 232

45
+ 56

π
√

3
− 3140

9π
+ 260

√
5

9π2
+ 912

π2
arctan

√
5+ 224

π2
√

3
arctan

√
5

3
≈ 29.174 181.

(5.18)

There seems to be no general closed formula.
To computeYn needs even more effort as one needs integrals over products ofFl(ri, rj )

for all l and finally a sum overl. Again there seems to be no general formula.

6. Number of dimensions other than one or three

The generalization of the definite integral (1.1) in ad-dimensional space, with the same
normalization1= 1, reads

F =
∫

e−(r
2
1+r2

2+···)/2F(r1, r2, . . .)
∏
j

ddrj

(2π)d/2
. (6.1)

The multipole expansion method of section 2 can be adapted here. The choice of
the orthogonal set of polynomials (Legendre ford = 3) is related to the irreducible
representations of the rotation group ind-dimensional Euclidean space in order that one
can write an addition theorem similar to (2.13). In general, for any givend let Pl(x) denote
the suitable complete set of polynomials orthogonal on(−1, 1) with the weightw(x)∫ 1

−1
Pl(x)Pk(x)w(x) dx = hlδlk. (6.2)

Any square integrable functionf (rij ) with the weight functionw(x) can be expanded in
terms of thesePl(x)

f (rij ) =
∞∑
l=0

Fl(ri, rj )Pl(x) (6.3)

wherex = cosθij andFl(ri, rj ), symmetric inri andrj , is given by

Fl(ri, rj ) = 1

hl

∫ 1

−1
f (rij )Pl(x)w(x) dx. (6.4)

To calculateFl(ri, rj ) for special functionsf (rij ), one may take advantage of the existence
of a generating function of the type (2.5) and the existence of a recurrence relation

xPl(x) = alPl−1(x)+ blPl+1(x) (6.5)

as in the cased = 3. The next step is to consider the generalized spherical harmonicsYl{m}.
For each non-negative integerl they are [5]

nl = (2l + d − 2)(l + d − 3)!

(d − 2)!l!
(6.6)

in number and are characterized by a set of integersm1, m2, . . ., md−2 with the restrictions

l > m1 > m2 > · · · > md−3 > |md−2| > 0. (6.7)



On some definite multiple integrals 8679

They form a standard orthonormal basis of the irreducible representations of the rotation
group SO(d) in the space of square integrable functions defined over the surface of the
d-dimensional unit sphere with the invariant measure [6]

d� = (sinθ1)
d−2(sinθ2)

d−3 . . . sinθd−2 dθ1 . . . dθd−2 dφ
06 θj 6 π 06 φ 6 2π. (6.8)

TheYl{m} are orthonormal∫
Y∗l{m}(�)Yl′{m′}(�) d� = δll′δ{m}{m′} (6.9)

and the special value we need is

Y0{0}(�) = S−1/2
d (6.10)

where

Sd = 2πd/2

0(d/2)
(6.11)

is the surface area of thed-dimensional unit sphere. So we have the addition theorem [7]

Pl(x) = clSd
∑
{m}
Y∗l{m}(�i)Yl{m}(�j ) (6.12)

where�i denotes the direction of the unit vectorri/ri and the sum{m} is over all integers
satisfying the inequalities (6.7).

Now doing a multipole expansion of each functionf (rij ), exactly as described
previously for the cased = 3, allows us to do the angular integrations, and one obtains for
Xn andYn expressions similar to (3.2) and (3.6)

Xn = 〈g|Kn
0 |g〉 (6.13)

Yn =
∞∑
l=0

nlTrKn
l (6.14)

where the kernelsKl and the normalized|g〉 are given by

Kl(r, r
′) = 〈r|Kl|r ′〉 = kdclFl(r, r ′)(rr ′)(d−1)/2 e−(r

2+r ′2)/4 (6.15)

〈r|g〉 =
√
kdr

(d−1)/2 e−r
2/4 〈g|g〉 = 1 (6.16)

and

kd = Sd

(2π)d/2
. (6.17)

Continuing to use bracket notation, we consider now the eigenvalue equation

Kl|ψj(l)〉 = λj (l)|ψj(l)〉. (6.18)

As in the cased = 3, for anyl the kernelKl(r, r ′) is real symmetric for any square integrable
functionf (rij ), and due to the exponential factors in (6.15), the trace of its square is finite.
Therefore, the spectrum of this Fredholm kernel is discrete, real and bounded, the only
possible accumulation point being zero. Thus one can write the spectral decomposition

Kl =
∑
j

λj (l)|ψj(l)〉〈ψj(l)| (6.19)

where the eigenstates|ψj(l)〉 are chosen to be real orthonormal

〈ψj(l)|ψj ′(l)〉 = δjj ′ 〈r|ψj(l)〉 real (6.20)
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and the eigenvalues are supposed to be ordered in decreasing absolute value. So from (6.13)
and (6.14) one gets forXn andYn expressions like (4.5) and (4.6)

Xn =
∑
j

λnj (0)〈ψj(0)|g〉2 (6.21)

Yn =
∞∑
l=0

nl
∑
j

λnj (l). (6.22)

In the appendix we indicate the set of appropriate polynomialsPl(x) orthogonal on
(−1, 1), the weightw(x), the normalization constanthl , the generating function, the
constantsal , bl , cl , appearing in equations (6.5), (6.12) and (6.15), and some other
information. The graphical representation of the integrals,Xn as a chain withn links,
Yn as a loop withn links, etc and the remarks about angular integrations made for the case
d = 3 are valid with minor changes. Let us remark that for anyd a direct calculation of
X1 andY2 using the integration variablesr1± r2 in (6.1) yields

X1 = 20((d + 1)/2)

0(d/2)
Y2 = 2d. (6.23)

For the cased = 1 the group SO(1) of rotations in one dimension is a discrete group with
only two elements, identity and the parity operation. For this reason the above considerations
are much simplified ford = 1, and we briefly discuss this case in section 7.

7. Case of one dimension

For the particular case of one dimension there are no angular integrations but the variablesri
run over(−∞,∞). Although the considerations are valid for any square integrable function
f (rij ), we give here the details only forrij . The kernel in the integral equation (4.1) is

K(r, r ′) = (2π)−1/2|r − r ′| e−(r2+r ′2)/4 (7.1)

over the interval(−∞,∞). SinceK(r, r ′) is invariant under a simultaneous change of sign
of r andr ′, the eigenfunctions of the integral equation

(2π)−1/2
∫ ∞
−∞
|r − r ′| e−(r2+r ′2)/4ψj(r ′) dr ′ = λjψj (r) (7.2)

are either even or odd. The even (odd) eigenfunctions are also eigenfunctions of∫ ∞
0
K±(r, r ′)ψj±(r ′) dr ′ = λj±ψj±(r) (7.3)

with

K±(r, r ′) = K(r, r ′)±K(r,−r ′). (7.4)

Note that a factor 1/2 on the right-hand side of this equation is missing, since the domain
of integration is reduced from(−∞,∞) to (0,∞).

These plus or minus kernels, eigenvalues and eigenfunctions correspond respectively to
the multipolesl = 0 andl = 1 of the general case presented in the previous section, which
are the only possibilities for one dimension (see the appendix). The traces of powers of
K±(r, r ′) andK(r, r ′) are related by the simple equation

Yn = TrKn = TrKn
+ + TrKn

−. (7.5)
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One can again calculate these tracesTn± = TrKn
±

T1± = ±
√

2

π
T2± = 1± 2

π
(7.6)

T3± = 3

2
√
π
±
(

2
√

2

π
√
π
− 9

2
√
π
+ 18

π
√
π

arctan
√

2

)
(7.7)

T4± = 1

3
− 4

π
+ 4
√

3

π
±
(

4

π2
+ 4
√

3

3π

)
(7.8)

and

X1 = 2√
π

X2 = 1

3
+ 2
√

3

π
(7.9)

X3 = 5√
π
+ 4
√

2

π
√
π
+ 2
√

2

π
√
π
− 12

π2
arctan

√
2 (7.10)

Y2 = 2 Y3 = 3√
π
. (7.11)

A numerical estimate of the eigenvaluesλj± of K± with 1000 discrete integration points
and step length 0.01 gives the dominant eigenvalues as

λ1+ = 1.2459 λ2+ = −0.2886 λ3+ = −0.0619 λ4+ = −0.0272 (7.12)

λ1− = −0.5945 λ2− = −0.0897 λ3− = −0.0350 λ4− = −0.0186. (7.13)

Compared to the casesd = 2 andd = 3 they decrease slowly, and to have comparable
precision one needs a smaller integration step.

8. Integration inside the unit sphere

To illustrate the general character of our method we will now compute the integralsXn and
Yn when the variables are restricted to lie inside the unit sphere. This means that we replace
the Gaussian weight by the weight

∏
i W(ri), whereW(r) = 1 for r 6 1 andW(r) = 0

for r > 1. We will treat only the simpler cased = 1. As theXn and theYn can also be
computed directly with an effort increasing withn, we get some identities.

In what follows, all the variables are restricted to the interval (0,1). Ford = 1 we have

K+(r, r ′) = max(r, r ′) (8.1)

K−(r, r ′) = −min(r, r ′). (8.2)

The integral equation (7.3) implies that the eigenfunctionsψj±(r) satisfy the following
differential equation

d2

dr2
ψj±(r) = ± 1

λj±
ψj±(r). (8.3)

Its solutions are

ψj±(r) = A e+r/
√
±λj± + B e−r/

√
±λj± . (8.4)
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The constantsA, B and the eigenvaluesλj± are determined by injecting (8.4) in the integral
equation (7.3) which has to be satisfied. The kernelK+ has only one positive eigenvalue
λ0+ and all other eigenvaluesλj+ are negative. They are given by√

λ0+ = tanh
1√
λ0+

−√−λj+ = tan
1√−λj+ j > 1. (8.5)

The kernelK− has only negative eigenvalues given by

λj− = − 4

π2

1

(2j + 1)2
j > 0. (8.6)

Formula (7.5) givesYn as the sum of traces ofKn
+ andKn

−, the second one can be written
explicitly as [11]

TrKn
− =

(−4)n

π2n

∞∑
j=0

1

(2j + 1)2n
= (−4)n(4n − 1)|B2n|

2(2n)!
(8.7)

whereB2n are the Bernoulli numbers. Thus (7.5) gives
∞∑
j=0

λnj+ = Yn −
(−4)n(4n − 1)|B2n|

2(2n)!
. (8.8)

For Xn given by (6.21), we also need the overlap〈ψj+|g〉2 between the normalized
eigenfunction〈r|ψj+〉 = ψj+(r) and〈r|g〉 = g(r) = 1. From (8.4) and (8.5), one finds

〈ψj+|g〉2 = 2λ2
j+ j > 0. (8.9)

This leads us to

Xn = 2
∞∑
j=0

λn+2
j+ . (8.10)

Equations (8.8) and (8.10) give in this case a relation betweenXn andYn

−Xn + 2Yn+2 = (−4)n+2(4n+2− 1)|B2n+4|
(2n+ 4)!

. (8.11)

If we introduce the new positive variablesρ0 andρj , j > 1, by

λ0+ = ρ2
0 λj+ = −ρ2

j j > 1 (8.12)

then (8.8), (8.10) and (8.11) take the simple form (X0 ≡ 1)

ρ2n
0 + (−1)n

∞∑
j=1

ρ2n
j = Yn −

(−4)n(4n − 1)|B2n|
2(2n)!

= 1

2
Xn−2 n > 2 (8.13)

whereρ0 andρj are the positive real roots of the equations

ρ0 = tanh(1/ρ0) − ρj = tan(1/ρj ) j > 1. (8.14)

Numerically one has the approximate values,

ρ0 = 0.833 557 ρ1 = 0.357 349 ρ2 = 0.163 365 ρ3 = 0.107 317. (8.15)

ComputingXn andYn directly, these provide identities. For example, one has directly

X1 = 2

3
X2 = 7

15
X3 = 34

105
X4 = 638

2835
Y2 = 2

3
Y3 = 4

15
(8.16)

so that

ρ4
0 +

∞∑
j=1

ρ4
j =

1

2
ρ6

0 −
∞∑
j=1

ρ6
j =

1

3
ρ8

0 +
∞∑
j=1

ρ8
j =

7

30
ρ10

0 −
∞∑
j=1

ρ10
j =

17

105
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ρ12
0 +

∞∑
j=1

ρ12
j =

319

2835
etc. (8.17)

These are the first members of a family of identities. Direct step by step integrations as in
(5.1) and (5.2) yields rational numbers forXn andYn.

A similar computation in three, five or seven dimensions will hopefully give new
identities. We expect to come back to this point later.
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Appendix

PolynomialsPl(x)
Tchebichef polynomials [8]Tl(x) for d = 2, and Gegenbauer polynomials [9]C((d−2)/2)

l for
d > 3 (for d = 3, they coincide with the Legendre polynomials [2]).

Weight function

w(x) = (1− x2)(d−3)/2. (A1)

Normalization constant

hl = π

2
(1+ δl0) d = 2 (A2)

= 2
√
π0(d + l − 2)0((d − 1)/2)

(2l + d − 2)l!0(d − 2)0((d − 2)/2)
d > 3. (A3)

Generating function

(1+ z2− 2xz)1−d/2 =
∞∑
l=0

C
((d−2)/2)
l (x)zl d > 3 |z| < 1 (A4)

−1

2
ln(1+ z2− 2xz) =

∞∑
l=1

1

l
Tl(x)z

l d = 2 |z| < 1 (A5)

or

1− z2

1+ z2− 2xz
= T0(x)+ 2

∞∑
l=1

Tl(x)z
l d = 2 |z| < 1. (A6)

Coefficients in the recurrence relation [8, 9]

al = bl = 1
2 d = 2 (A7)

al = l + d − 3

2l + d − 2
bl = l + 1

2l + d − 2
d > 3. (A8)
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Generalized spherical harmonicsYl{m} [10]

For d = 2, the harmonics are simply the exponentials(1/
√

2π) eimφ , and for d > 3,
one has the normalized surface harmonicsN(mk)−1/2Y(mk; θk,±φ), (identical to the
spherical harmonicsYlm(θ, φ) for d = 3), where according to Bateman [10]mk stands
for {m0 = l, m1, . . . , md−2} with md−2 > 0, and negative values ofmd−2 correspond to−φ

N(m0, m1, . . . , md−2) = 2π
d−2∏
k=1

Ek(mk−1, mk) (A9)

Ek(m,m
′) = π2k−2m′−d+20(m+m′ + d − k − 1)

(m+ (d − k − 1)/2)(m−m′)![0(m′ + (d − k − 1)/2)]2
. (A10)

Coefficient in the addition theorem [7]

cl = 1

2
d = 2; cl = d − 2

2l + d − 2
d > 3. (A11)

For even dimensionsd the generating functions are not convenient to calculateF(ri, rj )

for f (rij ) = rij . For example, whend = 2, K0 involves an elliptic integral

K0(r, r
′) =
√
rr ′(r + r ′)
π

E

(
2
√
rr ′

r + r ′
)

e−(r
2+r ′2)/4 (A12)

whereE is the complete elliptic integral of the second kind,

E(k) =
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ. (A13)

A numerical diagonalization of the kernelK0 with 1000 points and step length 0.01 gives
the dominant eigenvalues as

λ1(0) = 0.903 4944 λ2(0) = 0.093 3744 λ3(0) = 0.007 0863. (A14)

For one dimension the surface of the unit sphere reduces to two points+1 and−1,
the polynomialsPl(x) are only two,P0(x) = 1 and P1(x) = x, the integrations in
equations (6.2), (6.4) and (6.9) are reduced to a sum of two terms, and the formal structure
for generald, though not needed as we saw in section 7, can be maintained.
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