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Abstract. We study definite integrals over the ordinary three-dimensional space of
]'[ij f(rl-j)]'[j W(rj), where f(r;;) is a function only of the distance; between pointsr;

andr; and W(r) is either a Gaussian or any other function which ensures the convergence
of the integral. No analytical formula for them in general is known at present. The method is
based on a multipole expansion for angular integrations and a transfer matrix approach for radial
integrations. It can be generalized for any number of dimensions. A detailed study is presented
for the case off(r) = r and W(r) = exp(—r2/2), for three and one dimensions. To illustrate

the generality of the method, the same integrals in one dimension are calculated wittas

a step function. Comparison with the analytical solutions then provides a family of identities.

1. Introduction

Let
F= [ etitd+r2pe r 1 Fr; (1.1)
= 1, T2, ... ‘ (27_[)3/2 .
J
where r1, 7o, ..., are vectors in the ordinary three-dimensional space, the function

F(ry,7rs,...) is some product of functionﬂu f(ri;) depending only on the distances
rij = |r; —r;|, the integral is taken over all the space, and the normalization is chosen such
thatl = 1. Zeische came across the particular integrals [1]

o 4 6+/3
Xi=Fz= Xo =Tz =2+ ——
JT b1
X3 = FiaFaaias =2 Xy = F12F23- - Fansl =2 (1.2)
Y2=r12r21=6 Y3=m:?
Ys = Fiofaaraara =? Y, = Fioiogtaa. - Fal =2 (1.3)

If one replaces the;; by an even power of them, then the integrations are simpler [1].
Doing a multipole expansion in terms of spherical harmonics one can do angular
integrations. Only radial integrations then remain, which can be reduced to the solutions of
Fredholm integral equations. Curiously, the problem is less difficudt @imensions when
d is odd, than for even dimensions where it is more difficult. We have not been able to solve
the integral equations. Radial integrations can be done by direct calculation with increasing
complexity asn number of vectors increases. There seems to be no simple closed formula
for X, or Y,. The kernels of the integral equations play a role similar to a transfer matrix
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8672 M L Mehta and J-M Normand

as, for example, in the study of the Ising model in statistical mechanics. These kernels are
real symmetric and the traces of their first few powers can easily be computed. The largest
eigenvalues dominate which yield the approximate formulae

Xy = A121(0) + A225(0) + A3253(0) (1.4)

Y, = 21(0) + 25(0) + A5(0) + 311 (D) (1.5)
where the constants have the approximate values
A1 = 0.965282 A, =0.033892 A3 =0.000712 (1.6)
A1(0) = 2.344 693 A2(0) = —0.192 339 A3(0) = —0.017 291

A1(1) = —0.387100 a.7)

Such integrals can conveniently be represented by graphs. Xhis an open chain
with n links while Y, is a loop withn links. All angular integrations can be performed
by our method of multipole expansion for graphs having either no loop (tree structure) or
one loop. For graphs involving two or more loops, angular integrations can again be done
but they involve the Wigner 3-j or 6-j symbols (Racah coefficients) familiar in the quantum
theory of angular momentum. Then only the radial integrations will remain. The method
of multipole expansion and integral equations can also be used when the exponentials in
(1.1) are replaced by the weighf, W(r;), W (r) decreasing fast enough for the integral to
exist. This is the case, for example, when the variables are confined inside the unit sphere,
ie.Wr)y=1forr <landW() =0 forr > 1.

This paper is organized as follows. In section 2 we explain the multipole expansion
for three dimensions. Angular integrations are performed in section 3. Section 4 is
devoted to the integral equations related to radial integrations. In section 5 we compute
the radial integrals directly. All considerations until now were for three dimensions. The
generalization to other dimensions is given in section 6. The special case #hkerkis
treated in section 7. In section 8 the same integrals are calculated for a step fukctipn
instead of the Gaussian weight used previously. The appendix gives relevant information
for the generali-dimensional case.

2. Multipole expansion
Denoted byp;; the angle between; andr;, f(r;;) is a function ofr;, r; andx = coso;;,
symmetric inr; andr;,

S (rij) Ef[(r,2+f,2—2riﬁjx)l/2]~ (2.1)

Any function f (r;;) square integrable ir1 < x < 1 can be expanded in terms of Legendre
polynomials [2] P(x),! =0, 1,...,

foi) =Y Fri,r)P(x)  (x =cos). (2.2)
=0
The orthogonality relation [2]
1
2
/;1 Py(x) Py (x) dx = hybyn h = 2]7_’_1 (2.3)

allows us to write

1 1
Fi(ri,rj) = i /lf(rij)Pl(x)dx~ (2.4)
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For the integrals (1.2) and (1.3) we tal{gr;;) = r;;. In this case, and more generally if
frij) = rs-”l, n=0,1,..., in order to calculateF;(r;, ;) one can use two other general
properties of orthogonal polynomials, namely the existence of a generating function

oo
1+22—2) 2= P |z<1 (2.5)
=0
and the linear recurrence relation which relates three consecutive polynomials
l I+1
Pi(x) = P — P . 2.6
xPi(x) 2H_111(x)+2]+11+1(x) (2.6)
In particular,
Pl 2]y 22 oy 2 c=" 2.7)

ij r;

and assuming < 1, one gets from (2.5)

(o]
Pt =P L4 2% - 2 Z Pe(x)Z"* (2.8)
k=0

and from (2.4) forr; > r;
1 & !
Fi(ri,rj) = h—ri2'1+12zk/ (14 2% — 2x2)" " P (x) Py (x) d. (2.9)
! k=0 -1

Now expanding1+z2—2xz)"** in powers ofx and using iteratively the recurrence relation
(2.6), each termx? P, (x) can be expressed as a linear combination with constant coefficients

of the p + 1 polynomials Pr_,, Pr_p+2, ..., Pitp—2, Pryp. The integration over can
then be performed using the orthogonality relation (2.3). For thecas®, this procedure
gives
1 r\ 2 1 i\
Firi,r)=ri| —— - -—— (< P> 2.10
e i) r|:21+3(r,») 21—1<r,->} 2T (2.10)

The next step of the multipole expansion method follows from the invarianog; of
under a simultaneous SO(3) rotation wf and r;. The spherical harmonick;,,, [ > 0,
—1 < m <, form the standard basis of the irreducible representations of the SO(3) group
in the space of square integrable functions defined on the surface of the three-dimensional
sphere with the invariant measur® & sind dd d¢. The orthogonality relation reads [3]

b4 2
/Y,’:H(Q)Y,rm/(fz) aQ = / do sin@/ dp Y (6, )Y (0, @) = 811 Smm (2.11)
0 0
and one special value we need is
Yoo(R) = ! (2.12)
00 = i .

One also has the addition theorem [2, 5]
Py = 7 iY*(Q)Y @) (2.13)
1x) = 21+ 1m:_l Im i) Lim\ndj .

where; stands for the polar angl€8;,¢;) of r;.
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3. Angular integrations

Doing a multipole expansion of each functigi(r;;) one can conveniently represent the
integrals by introducing a graphical representation as follows. To each fungiigp)
there is a link between the pointsand j to which is associated a sum ovky, m;;, a
radial function(4r/(2;; + 1)) Fy,, (ri, r;), the spherical harmoniL‘lj‘/m,j (R2;) at the end and
Y,,m,;(2;) at the end;j. Each vertex stands for the radial integration

o0
(271)’3/2 / dr;rl-2 e 1t/2
0

and the angular integratiofids2;.

Let us first consider the diagram with a single chain. At each end point there is only
one spherical harmonic. From the special value (2.12) and the orthogonality relation (2.11),
the integration at the end poirftd2 yields the factory/4m 8,08,,0. Then the integration
J d©; for each vertex joined to this end point, using (2.11), propagates the val:e8
andm = 0 all along the chain. Thereby one obtains for a chain of lemgth

2 1/2 00 . ) n+1
Xn = (n) / r1€ 4 Ko(r1, 1) Ko(rz. 13) . .. Ko(rn, Fag)raa€ i/ [ T dry (3.1)
0 i

j=1

= (gIK§lg) (3.2)

where for compactness and to emphasize the structure of the expression, we have used
bracket notation with

2 1/2 2 73
mvmb=vmmw=<n) Fi(r,r/yrr e /4 (3.3)

2+1

1/4 ,
(rlg) = <n> re’ /4 (glg) =1 (3.4)

Notice that only the multipolé = 0 occurs inX,,.

For one loop diagrams, a similar argument shows that all the links carry the same value
of I andm. Since the result of the angular integrations no longer depends, mme gets
a sum over with a weight 2 4+ 1 for the loop. Thus for a loop of links one gets

Y, = Z(Zl + 1)]() Ki(r1,r2)K;(ra,73) ... Ki(ry, r1) l_[ dr; (3.5)
=0 j=1
=> @+ DTk} (3.6)

1=0
The same method applies to any graph having either no loop (tree structure) or one
loop. Indeed thé = 0 andm = O values propagate along each branch from the external
end point to a vertex where it reaches either a loop or another branch. For graphs involving
two or more loops, theé values carried by each incoming link at a bifurcation have to be
recoupled according to the usual angular momentum algebra. The angular integration over
each; implies the invariance of the result under any individual rotatiom;of Therefore,
all the incoming!/ values at a vertex must be recoupled to zero. This recoupling scheme
involves Wigner 3-j or 6-j symbols (Racah coefficients) familiar in the quantum theory of
angular momentum.
Notice that the above discussion is valid for any functjti,;) depending only on the
distancer;; and for any weigh (r) replacing the Gaussian.
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4. Radial integrations

Consider now the integral equation

/0 Ki(r, vy (r', D) dr’ = 1 (D) (r, 1) (4.1)

with K;(r, r') given by (3.3) above. The kerndl, (, ') is real symmetric and the trace of
its square forf (r;;) = ry;

4 |: 1 rl+3 1 rl+1 i|2

> 2 ’ _
/ KiGrrydrdr’ = 2+3 5T 2A—1r1-2

0 7T(21 + 1)2 0<r<r'<oo
xe 2 g dr! (4.2)

is finite. According to a theorem of Fredholm [4], the eigenvalugg) are discrete and
their only point of accumulation may be zero. The eigenvalu€d lie on a finite part of
the real line and the eigenfunctions(r, /) can be chosen to be real orthonormal

'/0 1A”j(r’ D (r, 1) dr =8jk. (43)

The eigenvalues can be supposed to be ordered in decreasing absolute value. One can
therefore write the spectral decomposition

Ki(r,r'y =Y aOvy o DY (' D) (4.4)
J
and hence
2\1/2 0 , 2
X, = (ﬂ) Zx;f(m( [ weorer dr) = O W18)? (4.5)
j J
Yy=) @+ M0). (4.6)
1=0 j

The traces of the first two powers &f;(r, ') are

00 2\"? 8
Tl(l) =TrK, = /(; K;(r,r) dr = — (ﬂ) (2] — 1)(2[ n 1)(21 n 3) (47)

() = Trk? = f K7 (r,r') dr dr’
0

-1 r 2 It T (4.8)
T2+ \@2+32'"P T @ —n@+3 T @—p2tt '
where
00 [ee) 1 21
I = / drr? e—r2/2/ dr'r®2 e r?/2 = 48/ o dr. (4.9)
0 r 0 (tz + 1)4

The last expression, obtained by a change of variables rr’, r = r/r’, shows that
I,4+1 < I,. Replacing the? + 1 in the denominator by 2 orr2ne obtains bounds faf

3
L <" 1>2 (4.10)

2+1 'S -3
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A rough upper bound fo?5(/) is thus given by

1 2 1
I/EE)

0= oy <(21 12 @@+ @12
16

= 1, 411
(2 + 322 — 12 "t (4.11)
i.e. T»(I) decreases at least as fast’aswith /. For example
37 37 157
1057 3157 2723 6937
I,=83— " — Is= """ — 247 [g=——"—-" (412
4 =83 1 5 2 6 3 7 (4.12)
giving
20 32 224 4
T: = — — —~5534 Hh(l)=-— —-=01
0 %6 T 9325 SO RO 7 170 232 50167826
T2 = — — ——— =~ 0.002249 T7,(3) = ——— — — ~0.000194 (4.13
2@ = 105~ 110250 23 = 99225 ~ 315 4.13)

The kernelKq(r, r’) is positive everywhere, so that among its eigenvalues, one having the
largest absolute value is positive and non-degenerate. It is bounded4i().

Expressions (1.4) and (1.5) are the truncated forms of (4.5) and (4.6) retaining only
three dominant eigenvalues(0), and one dominant eigenvalag(1). The eigenvalues;
and the constantd; were computed by diagonalizing a discrete version of the kernels with
1000 points and step length 0.01. These approximate formulae reproduce the analytical
values ofX, for 1 < n < 4 given by (1.2), (5.17) and (5.18) correct up to at least 6 decimal
points. Actually two eigenvalues are sufficient for> 2. To convince ourselves that the
other eigenvalues oKy(r, ') are quite negligible, we did also compute

2\*? (305 1372 171/2
T3(0)=Tr1<g=() ( /2 /2

o - s + 5 arctan\f2> ~ 12.883024 (4.14)

while 23(0)+3(0)+13(0) ~ 12.883029. AsTi(!) is negative and>(/) decreases fast with
[, we keep onlyA;(1). Numerically, the valueg,(1) = —0.028 21 andi3(1) = —0.006 15
are negligible. Setting = 2 in (1.5) yieldsY, ~ 5.984 418 instead of the known value 6.

5. Direct calculation of radial integrations

For X, one needs onlyy(r1, r2), SO one can successively find with increasing complications
A = [ R e 5.1)
0
o 2
fiva(r) = / [ Fo(r', ryr? e /2 dr’ j>1 (5.2)
0
For f(r.ij) = rij, one has
1
Aulr) = €24 0%+ () (5.3)

5 , 1 2 2 2
fa(r) = 3 e’ + é(r2 +6) [% — <p2(r)] — §(r2 + 5@ e 2 + *3C(6r2 + 7)<p(r«(/5§11)
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with ¢(r) the error function

o(r) = / a2y, (5.5)
0
From f1(r) and f>(r) one obtains
2 o0
X1=— / 72 e_rz/zfl(r) dr (5.6)
T Jo
2\¥2 oo 2 2\¥2 o 2
&:(> / ﬂ@”%ﬁﬂW:() / r2e" 2 frydr (5.7)
T 0 T 0
2\ [ 2 —r2/2
Xa=|{— / r2e "2 f1(r) fo(r) dr (5.8)
0
2\*? [ 2
X4 = () / rler /2f22(r) dr. (5.9)
4 0
The integrals involved are of the general form
Ik, j. ) = f p(r)e! (r) 72 dr (5.10)
0

where p(r) is a polynomial of degreé, u is a real number and is an integer. Such
integrals can be simplified first by decreasing the integsuccessively to zero. For this,
choose a polynomiaj(r) of degreek — 1 such that
d
OT(q (r) e 12y — e W2 p(r) + K] K constant (5.11)
r

and integration by parts gives
/o p(r) e Ryl (rydr = —K /0 e 2] (r) dr

= / q(r) e W2 i1 () dr (5.12)
0

the integrated part being zero at both limitsjif>- 0. So (5.12) gived (k, j, 1) in terms
of 1(0,j,w), Ik —1,j -1, /u2+1 and known functions. Thug(k, j, u) can be
expressed in terms of the integrdl€), j', 1) andI (X', 0, u'). TheI(k, 0, u) are standard
integrals involving gamma functions. As fdn0, j, u), differentiating with respect ta
and integrating by parts as above, one gets a first-order differential equation in

E[,U,I(O, js M)] - J / </)j_l(r)r e—(/L2+1)r2/2 dr
du 0

8j1 JG =
— — 1(0, 2, 2 5.13
] M2+1(J Vi +2) (5.13)
with the solution

W10, . 1) = i (%)(j+1)/2 B fﬂ d/L|: i1 ](] )1(0 j—2 /M T 2)i|
1

j+1 u2+1 u?+1
(5.14)

sincel(0, j,1) = (7/2)U+V/2/(j + 1). The integrations on the right-hand side of (5.14)
are more elementary and can be carried out. For example, one has

o0 2,2 1
10,1, pn) = / e 2y dr = r_= arctanu (5.15)
0 2 u

o 1 3/2 2
10,2, 1) = / ey ar = = (T */7’
0 u\2

arctan (5.16)

NI +2
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Of course, the effort needed to computg increases fast witlk. For example, we get
from (5.6)—(5.9)X; and X, as given in (1.2), and

56v2 216 238
X3=——— — —— arctanv2 — ~ 12442385 5.17
= aayn  nda Mv2) + ﬁ (5.17)
232 56 3140 2605 5
X4=—— a rctanv'5 arctan,/ - ~ 29174181
=5t 9n+9n2+ nf+nf

(5.18)

There seems to be no general closed formula.
To computeY, needs even more effort as one needs integrals over produgis-afr;)
for all I and finally a sum ovet. Again there seems to be no general formula.

6. Number of dimensions other than one or three

The generalization of the definite integral (1.1) indalimensional space, with the same
normalizationl = 1, reads

= d
F= / e IR (py 1y, )]_[(zﬂ;’/2 (6.1)

The multipole expansion method of section 2 can be adapted here. The choice of
the orthogonal set of polynomials (Legendre for= 3) is related to the irreducible
representations of the rotation group dadimensional Euclidean space in order that one
can write an addition theorem similar to (2.13). In general, for any giéxt P, (x) denote

the suitable complete set of polynomials orthogonaled, 1) with the weightw(x)

1
/1Pz(x)77k(x)w(x)dx = hidyk. (6.2)

Any square integrable functioyfi(r;;) with the weight functionw(x) can be expanded in
terms of theseP,; (x)

foi) =) Filri,rp)Pi(x) (6.3)
=0
wherex = cos;; and F;(r;, r;), symmetric inr; andr;, is given by

1 1
Fi(ri,rj) = I /lf(rij)Pl(x)w(x)dx~ (6.4)

To calculateF; (r;, r;) for special functionsf (r;;), one may take advantage of the existence
of a generating function of the type (2.5) and the existence of a recurrence relation

xPi(x) = aP—1(x) + byPry1(x) (6.5)

as in the casd = 3. The next step is to consider the generalized spherical harmnigs

For each non-negative integethey are [5]

@2 +d—-2(1+d-3)!
"= d — 2!

in number and are characterized by a set of integqr,Sng, ..., mg_> With the restrictions

(6.6)

IZmy>2mp > 2my_3>|my_sl > (6.7)
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They form a standard orthonormal basis of the irreducible representations of the rotation
group SO() in the space of square integrable functions defined over the surface of the
d-dimensional unit sphere with the invariant measure [6]
dQ = (sin6)?2(sind)* 3. . . sin6,_odb; ... db;_»dg

0<f < 0< ¢ <2n (6.8)

The Yy are orthonormal

/yf?m}(ﬂ)ylf{m/}(ﬂ) dS2 = 8118 (mym) (6.9)
and the special value we need is

Vo () = 8,77 (6.10)
where

2712

Sa = 6.11

=T (6.11)
is the surface area of the-dimensional unit sphere. So we have the addition theorem [7]

Pix) = c1Sa Y Vi () Vi) (29) (6.12)

{m)
whereQ; denotes the direction of the unit vectar/r; and the sunim} is over all integers
satisfying the inequalities (6.7).
Now doing a multipole expansion of each functiof(r;;), exactly as described
previously for the casé = 3, allows us to do the angular integrations, and one obtains for
X, andY, expressions similar to (3.2) and (3.6)

X, = (g|Kplg) (6.13)
[o¢]
Y, = Zn,TrK;' (6.14)
=0
where the kernelk; and the normalizedig) are given by
Ki(r, ") = (r|Ki|r") = kac, Fy(r, ') (rr") @~ D/2 g (/A (6.15)
(rlg) = Vkar@2e It (glg) =1 (6.16)
and
Sa
kg = ——. 6.17
= i (6.17)
Continuing to use bracket notation, we consider now the eigenvalue equation
Kily; (D) = 2 (D1Y; (D). (6.18)

As in the casel = 3, for any! the kernelK, (r, r’) is real symmetric for any square integrable
function f(r;;), and due to the exponential factors in (6.15), the trace of its square is finite.
Therefore, the spectrum of this Fredholm kernel is discrete, real and bounded, the only
possible accumulation point being zero. Thus one can write the spectral decomposition

K=" 5O O); 0 (6.19)
J

where the eigenstateg; (/)) are chosen to be real orthonormal
(Wi DI (D) = 8 (rly; (D) real (6.20)
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and the eigenvalues are supposed to be ordered in decreasing absolute value. So from (6.13)
and (6.14) one gets fax,, andY, expressions like (4.5) and (4.6)

X, =Y _MO)(y;0)]g)? (6.21)
J
Yo=Y m Yy M. (6.22)
1=0 j

In the appendix we indicate the set of appropriate polynonils) orthogonal on
(—-1,1), the weightw(x), the normalization constari;, the generating function, the
constantsg;, b;, ¢;, appearing in equations (6.5), (6.12) and (6.15), and some other
information. The graphical representation of the integrals,as a chain withn links,

Y, as a loop withn links, etc and the remarks about angular integrations made for the case
d = 3 are valid with minor changes. Let us remark that for @ng direct calculation of
X, and Y, using the integration variables + r, in (6.1) yields

_2r(d+1)/2)
YT W)
For the cas@ = 1 the group SO(1) of rotations in one dimension is a discrete group with

only two elements, identity and the parity operation. For this reason the above considerations
are much simplified foel = 1, and we briefly discuss this case in section 7.

Y, = 2d. (6.23)

7. Case of one dimension

For the particular case of one dimension there are no angular integrations but the variables
run over(—oo, oo). Although the considerations are valid for any square integrable function
f(rij), we give here the details only fef;. The kernel in the integral equation (4.1) is

K(r,r)y = ) 2| — r/| e "0 (7.1)

over the interval—oo, co0). SinceK (r, r’) is invariant under a simultaneous change of sign
of r andr’, the eigenfunctions of the integral equation

(27)~ 112 /Oo Ir—r| e—<r2+r’2)/4wi 'y dr' = A9, (r) (7.2)
are either even or odd. The even (odd) eigenfunctions are also eigenfunctions of

/000 Ki(r,r e (r')dr' = Ao (r) (7.3)
with

Ki(r,r') =K@, r') £ K(r,—r"). (7.4)

Note that a factor 1/2 on the right-hand side of this equation is missing, since the domain
of integration is reduced fronoo, co) to (0, 00).

These plus or minus kernels, eigenvalues and eigenfunctions correspond respectively to
the multipoled = 0 and/ = 1 of the general case presented in the previous section, which
are the only possibilities for one dimension (see the appendix). The traces of powers of
K. (r,r") andK (r, r") are related by the simple equation

Y, =TrK" = TrK] + TrK". (7.5)



On some definite multiple integrals 8681

One can again calculate these traggs = TrK,

2 2
Ty =+, = Toy =14+ = (7.6)
T T
3 22 9 18
Tay = + - arctanv/2 7.7
SN (nﬁ NN ) (7.7)
1 4 43 4 43
Tpe = - — — + "4 2 4 0% (7.8)
3 7 b5 2 3r
and
2 1 23
X = Xp= -+ 2% 7.9
1 N 2= 3 + - (7.9)

5 44/2 24/ 2 12
+f V2 2

—_— E— ——— — — arcta

N AR N AN

2 Y3= —. 7.11
= (711)

A numerical estimate of the eigenvaluks, of K, with 1000 discrete integration points
and step length 0.01 gives the dominant eigenvalues as

(7.10)

Ay =12459 Ay, =-—02886 Az =—0.0619 A4 = —0.0272 (7.12)
A =-05945 i, =-00897 iz =-00350 A4 =-00186 (7.13)

Compared to the cases= 2 andd = 3 they decrease slowly, and to have comparable
precision one needs a smaller integration step.

8. Integration inside the unit sphere

To illustrate the general character of our method we will now compute the integjsadad
Y, when the variables are restricted to lie inside the unit sphere. This means that we replace
the Gaussian weight by the weighf, W (r;), wherew(r) = 1 forr < 1 andW(r) =0
for r > 1. We will treat only the simpler cas¢ = 1. As theX, and theY, can also be
computed directly with an effort increasing wiihh we get some identities.

In what follows, all the variables are restricted to the interval (0,1). &~er 1 we have

K, (r,r") = maxr,r') (8.1)
K_(r,r) = —min(r, r). (8.2)

The integral equation (7.3) implies that the eigenfunctigns(r) satisfy the following
differential equation

d? 1
@I/fji(r) = iﬂ%i@) (8.3)

Its solutions are
Yin(r) = AeT N 4 BV (8.9)
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The constants, B and the eigenvalues.. are determined by injecting (8.4) in the integral
equation (7.3) which has to be satisfied. The kerkielhas only one positive eigenvalue
Mo+ and all other eigenvalues . are negative. They are given by

1
Aoy = tanh — /=Xy =tan j=1 8.5
0+ /T‘OJ” Jj+ —it ( )
The kernelK_ has only negative eigenvalues given by
4 1
A= — i > 0. 8.6
J 7_[2 (2] + 1)2 J ( )

Formula (7.5) gives, as the sum of traces &, and K", the second one can be written
explicitly as [11]

(=" & 1 (=4)" (4" — 1)| By |
TrK" = = 8.7
= ; @2j + 17 2(2n)! &7
where B,, are the Bernoulli numbers. Thus (7.5) gives
- (—4)"(4" —1)| Boy|
A=Y, — . 8.8
]; s 2(2n)! (8:8)

For X, given by (6.21), we also need the overla¢j+|g)2 between the normalized
eigenfunction(r|y;;.) = ¥+ (r) and(r|g) = g(r) = 1. From (8.4) and (8.5), one finds

(V1) =207, j=0. (8.9)
This leads us to
X, =2y M2 (8.10)
j=0

Equations (8.8) and (8.10) give in this case a relation betwgeandy,
(_4);1+2(4n+2 _ 1)|an+4|

— X, + 2V = 8.11
+ iz @20 + &) (8.11)
If we introduce the new positive variableg and p;, j > 1, by

Ao+ = P Ajp = —sz j=1 (8.12)
then (8.8), (8.10) and (8.11) take the simple forky & 1)

= 4" (4" —1)|Bxl 1

24 (=1)" ?"zy,l—( =X, >2 8.13

g’ + (—1) ;p, 55 SXn2 (8.13)

wherepp and p; are the positive real roots of the equations

po = tanh(1/po) — pj =tanl/p;) jz1 (8.14)
Numerically one has the approximate values,
po = 0.833557 p1 = 0.357 349 p2 = 0.163 365 ps = 0.107 317 (8.15)
ComputingX, andY, directly, these provide identities. For example, one has directly

2 o7 34 638 v 2 Y_4(816)
173 27 15 = 105 4= 2835 273 3T 15
so that

Po ‘110j_§ Lo '1:0]'—5 0o -1pj_§) Po ~1pj =105
j= j= j= j=
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224 EOO 12 319 etc (8.17)
PO 2P = 2835 '
j:

These are the first members of a family of identities. Direct step by step integrations as in
(5.1) and (5.2) yields rational numbers f&, andy,,.

A similar computation in three, five or seven dimensions will hopefully give new
identities. We expect to come back to this point later.
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Appendix

PolynomialsP;(x)

Tchebichef polynomials [8];(x) for d = 2, and Gegenbauer polynomials ng(d’z)/z) for
d > 3 (for d = 3, they coincide with the Legendre polynomials [2]).

Weight function
w(x) = (1 —x?)@=3/2, (A1)

Normalization constant

hy %(14-3/0) d=2 (A2)

2/70(d+1—2)T((d — 1)/2)

— d >3 A3
(2 +d—2)I'T(d—-2T((d—2)/2) (A3)
Generating function
o
(1422 — 22 =3 "¢/ 2 ()] d>3 Izl <1  (Ad)
=0
1In(1+ 2 _2x7) ilT( )z! d=2 lz| <1 (A5)
—_ — = — = <
2 4 Z 2 i 1(X)2 4
or
1 - Zz > l
—— =T 2 T, d=2 1 A6
Th 7o = W ; 1)z 2] < (A6)
Coefficients in the recurrence relation [8, 9]
a=b =3 d=2 (A7)
l+d-3 I+1
a= 075 o P s (A8)

S 2+4+d-2
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Generalized spherical harmoni@g,,; [10]

For d = 2, the harmonics are simply the exponentiglg/27)€"¢, and ford > 3,
one has the normalized surface harmoniégm,)~Y2) (my; 6y, £¢), (identical to the
spherical harmonicg,,,(6, ¢) for d = 3), where according to Bateman [18]; stands

for {mg =1, ma, ..., my_2} with my_» > 0, and negative values of,_, correspond to-¢
d—-2
N(mg,my, ..., my_3) =2n l_[ Ey(my—1, my) (A9)
k=1
k=2m'—d+2p ‘+d—k—-1
E(m. m') = m (m +m + ) . (A10)
(m+(d—k—1)/2)(m —mH[T(m'+ (d —k —1)/2)]?
Coefficient in the addition theorem [7]
1 d—2
=3 T Ava-2 (A1)

For even dimensiong the generating functions are not convenient to calcukdte, r;)
for f(r;;) = r;j. For example, whed = 2, K, involves an elliptic integral

Ko(r’ r/) _ v rr’(r + r/)E<2\/ rr’) e_(r2+r/2)/4 (A]_Z)
T r+r'
where E is the complete elliptic integral of the second kind,
/2
E(k) =/ (1 —k%sirf9)Y? ds. (A13)
0

A numerical diagonalization of the kern&ly with 1000 points and step length 0.01 gives
the dominant eigenvalues as

A1(0) = 0.9034944 A2(0) = 0.0933744 A3(0) = 0.007 0863 (A14)

For one dimension the surface of the unit sphere reduces to two ppihtand —1,
the polynomialsP;(x) are only two, Po(x) = 1 and Pi(x) = x, the integrations in
equations (6.2), (6.4) and (6.9) are reduced to a sum of two terms, and the formal structure
for generald, though not needed as we saw in section 7, can be maintained.
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